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1 Introduction

In the past, feature extraction and identification were interesting concepts, but not required
to understand the underlying physics of a steady flow field. This is because the results of
the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and
easily abstracted so they could be represented to the investigator. These tools worked
and properly conveyed the collected information at the expense of much interaction. For
unsteady flow-fields, the investigator does not have the luxury of spending time scanning
only one “snap-shot” of the simulation. Automated assistance is required in pointing out
areas of potential interest contained within the flow. This must not require a heavy compute
burden (the visualization should not significantly slow down the solution procedure for co-
processing environments like pV3). And methods must be developed to abstract the feature

and display it in a manner that physically makes sense.

The following is a list of the important physical phenomena found in transient (and
steady-state) fluid flow:

1.1 Shocks

The display of shocks is simple; a shock is a surface in 3-space. As the solution progresses, in
an unsteady simulation, the investigator can view the changing shape of the shock surfaces.
Some previous work has been done at MIT (as well as other places) on this problem. This

early work [Darmofal9la, Darmofal91b] developed the following algorithm:

First determine the normal direction to the shock. Across a shock, the tangential velocity
component does not change; thus, the gradient of the speed at a shock is normal to the
shock. The exact location of the shock is then determined by calculating the magnitude of
the Mach vector, in the direction of the speed gradient, at all points in the domain. The
normal Mach number is defined as the Mach vector dotted into the speed gradient. Thus,
a positive normal Mach number indicates streamwise compression and a negative normal
Mach number indicates expansion. If this value is 1.0 then a shock has been found (or
possibly an isentropic recompression through Mach one). This entire iso-surface can be
displayed to show the shock, but must be thresholded to remove the surfaces associated
with the recompression and some stray portions of the flow field where the normal Mach
number happen to be 1.0. The magnitude of the speed gradient was found to be an effective
threshold.



1.2 Vortex Cores

Finding these features is important for flow regimes that are vortex dominated (most of
which are unsteady) such as flow over delta wings and flow through turbine cascades.
Tracking the core can give insight into controlling unsteady lift and fluctuating loadings

due to core/surface interactions.

There has been much work done in the location of these features by many investiga-
tors. Again, there has been some success [Kenwright97]. This particular algorithm as fully
described in [Sujudi95] has been designed so that no serial operations are required, it is
parallel, deterministic (with no ‘knobs’), and the output is minimal. The method operates
on a cell at a time in the domain and disjoint lines are created where the core of swirling
flow is found. Only these line segments need to be be displayed, reducing the entire vector

field to a tiny amount of data.

This technique, although satisfying, is not without problems. These are:

1. Not producing contiguous lines.
The method, by its nature, does not produce a contiguous line for the vortex core.
This is due to two reasons; (1) for element types that are not tetrahedra the inter-
polant that describes point location within the cell is not linear. This means that if
the core passes through these elements the line can display curvature. By subdivid-
ing pyramids, prisms, hexahedra and higher-order elements into tetrahedra for this
operation produces a piecewise linear approximation of that curve. And (2) there is
no guarantee that the line segments will meet up at shared faces between tetrahedra.
This is because the eigenvector associated with the real eigenvalue will not be exactly
the same in both neighbors, so when this vector is subtracted form the vector values

at the shared nodes each tetrahedra sees a differing velocity field for the face.

2. Locating flow features that are not vortices.
This method finds patterns of swirling flow (of which a vortex core is the prime
example). There are other situations where swirling flow is detected, specifically in the
formation of boundary layers. Most implementations of this technique do no process
cells that touch solid boundaries to avoid producing line segments in these regions.
But this does not always solve the problem. In some cases (where the boundary layer
is large in comparison to the mesh spacing) this boundary layer generation is still

found.



3. Sensitive to other non-local vector features.
Critical point theory gives one classification for the flow based on the local flow quan-
tities. 3D points can display a limited number of flow topologies including swirling
flow, expansion and compression (with either acceleration or deceleration). The flow
outside this local view may be more complex and have aspects of all of these com-
ponents. The local classification will depend on the strongest type. Also if there are
two (strong) axes of swirl, the scheme will indicate a rotation that is a combination
of these rotation vectors based on the relative strength of each. This has been re-
ported by [Roth96] where the overall vortex core strength was not much greater that
the global curvature of the flow. The result was that the reported core location was

displaced from the actual vortex.

1.3 Regions of Recirculation

Recirculation is a difficult feature to locate, but a simple one to visualize. A surface exists
that separates the flow (in steady-state) so that no streamlines seeded from one side of
this surface penetrate the other side. Some work has been done in locating this feature by
computing the stream function. Also it is possible to use vector field topology to find the
extent of this region and then draw a series of streamlines connecting the critical points.

These lines can be tessellated to create this separation surface.

These methods do not work for transient problems. Like a series of instantaneous
streamlines can be misleading in unsteady flow regimes, using techniques based on stream-
lines will not represent the regions of older fluid. The concept that appears most promising
is Residence Time. This is the Eulerian view of unsteady particle tracing (a Lagrangian op-
eration). A simple partial differential equation can be solved on the same mesh along with
the flow solver. (NOTE: This is possible when performing co-processing; the CFD solver
and Residence Time calculation have the same time limit constraints.) An iso-surface can
be generated through the result so that regions of old fluid can be separated from newer

fluid elements. Again, some work has been done on this algorithm [Sujudi96].

1.4 Boundary layers

Boundary layers are features that are very important in most complex fluid flow regimes.
The size and shape of the boundary layer are used to determine such values as lift and drag
in external aerodynamics. For turbomachinery the size of the boundary layers determine the

effective solidity. With regions of recirculation, the boundary layers determine the blockage.



In all cases the boundary layer edge can be constructed as a surface (some distance away

from solid walls) in 3D flows.

There have been no successes in any known work to robustly determine the surface that
represents the extent of the boundary layer from traditional CFD solutions. Fundamentally,
this is a very difficult problem. The edge is poorly defined numerically and is more a subtle

transition that an abrupt feature.

Accurately knowing the edge of the boundary layer has many numerical benefits for
the solver. Turbulence models can be more accurately applied. Grid adaptation can place
nodes where they are needed. Split solvers (Euler in core flow, Navier-Stokes in boundary
layers) will be more stable and accurate when the position of the edge of the boundary layer

is known.

1.5 Wakes

Wakes are usually generated by the merging of boundary layers down stream from a body.
Like boundary layers, these features are important for both internal and external flows.
Knowing where, and under what circumstances, the wakes impinge on other bodies can
have a changing effect on the structural and thermal loads experienced on those surfaces.

Again, there has been no real success in finding this feature.



2 Progress This Year

The goal of this work is to develop a comprehensive software feature extraction tool-kit
that can be used either directly with CFD-like solvers or with the results of these types
of simulations (i.e. data files). The output of the feature “extractors” will be produced in
such a manner that it could be rendered within most visualization systems. Much effort
will be placed in further quantifying these features so that the results can be applied to
grid generation (for refinement based on the features), databases, knowledge based and
design systems. This requires two distinct phases; (1) the research into algorithms that will

accurately and reliably find these features and (2) the construction of the software tool-kit.

During this first year the following algorithmic work has been accomplished:

2.1 Shocks

The procedure explained above has been re-examined. First, much effort was placed in
examining algorithms that find discontinuities in scalar fields. These techniques can be
thought of as the 3D analogue to the methods used in image processing. This approach

failed in finding shocks for the following reasons:

e Sharpness.
Most CFD solvers that perform differences to compute derivative and flux quantities
do not suppress saw-tooth oscillations in the solution. These can become unstable
in even in quiescent flow (for numerical reasons) and will blow-up in the presence of
discontinuities. For this reason these CFD solvers “smooth” the flow field. This obvi-
ously reduces the ability to find sharp discontinuities since they have been removed.
Even for solvers that can handle abrupt changes in the flow field, a shock will probably

be smeared across 2 to 3 cells.

e Derivative quantities.
There tends to be noise generated when derivative quantities are computed from local
(cell based) operators. Using operators with larger stencils are possible in structured
block meshes but difficult in unstructured grids. This noise problem is amplified when

second derivatives are required.

Therefore the shock finder that requires looking for the inflection point — where the
laplacian of the laplacian of pressure (the second derivative) is zero is doomed in CFD

solutions.



A shock finder has been developed that is a modification of the early work described
above. For steady state solutions, the normalized pressure gradient is used instead of the
speed gradient — this is less susceptible to other flow features such as boundary layers. It
has been found that no thresholding is required. There is also an extension for transient
solutions. See the attached document “Shock Detection from CFD Solutions”. This working

document will be refined and submitted as a paper the IEEE Visualization conference.

Before the end of this contract period, addition work will be done to classify the shocks

found as to strength and type (normal, oblique, bow and etc.).

2.2 Vortex Cores

The current algorithm produces a series of disjoint line segments. When displayed, the eye
puts together (or closes) a single line, for a single core, (when the strength of the core is
large). This is not acceptable for off-line uses (the first problem listed above) in that it is
not possible to trace the full extent of the core. Work is underway that resolves this issue.
Enforcing the cell piercing to match at cell faces insures that the line segments generated
will produce a contiguous core. This can be done via the following modification to the

algoithm:

1. Compute the Velocity Gradient tensor at each node.
This requires much more storage — 9 words are needed for each node in the flow field.
This has the advantage that the stencil used for the operation is larger than the cell

and therefore the result will be generally smoother.

2. Average the node tensors (on the face) to produce a face-based Velocity Gradient
tensor.

This insures that the same tensor is produced for the two cells touching the face.

3. Perform the eigen-mode analysis on the face tensor.
If the system signifies swirling flow, determine if the swirling axis cuts through the

face by the scheme used in the current method. If, so mark the location on the face.

This scheme will work at the expense of memory and a much higher CPU load. Four
eigen-mode calculations are required for each tetrahedron instead of just one. In general,
this can be reduced to two per tetrahedron, by the additional storage of face results (about
3 words per face). Note: there are about 2 times the number of faces as cells in a tetrahedral

mesh.



This is not a good result, in particular for structured blocks, where each individual hex-
ahedron is broken up into 6 tetrahedra (5, the minimum does not promote face matching).
This means that for each element in the mesh a minimum of 12 eigen-mode analyses are

required.

These performance problems suggest another, related, technique:

1. Compute the Velocity Gradient tensor at each node.

2. Perform the eigen-mode analysis on the node tensor.
The tensor can be overwritten with the critical point classification and the swirl axis

vector for rotating flow.

3. Average the swirl axis vectors for the nodes that support the tetrahedral face.
This should only be done if all nodes on the face indicate swirling flow. Some care
needs to be taken to insure that the sense of the vectors are the same. Determine if

the swirling axis cuts through the face, and if so, mark the location on the face.

This shows great potential. For tetrahedral meshes, the reduction of compute load is
by a factor of 5 to 6 over the original method (there are roughly 5.5 tetrahedra per node
in ‘good’ unstructured grids). For structured blocks, where the number of nodes is about
equal to the number of hexahedra, the number of eigen-mode analyses required is on the

order of one per cell.

Before the end of this contract period, this new scheme will be implemented and tested.

2.3 Boundary layers and Wakes

Some progress has been made in this difficult arena. An algorithm is being constructed that
will allow the use of iso-surfacing to separate the boundary layers and wakes from core flow.
The method stems from the fact that these features display both rotating flow and fluid
under shear stress. This is why, sometimes the vortex core technique gives false-positives
for locations in boundary layers. Therefore, with a boundary layer finder we should be able
to mask out these finds in the boundary layer and only display those lines that trace back

from the outer flow.



To numerically define these quantities we again start with the Velocity Gradient tensor

at each node:

e Rate of Rotation.
This quantity is related to vorticity. A skew-symmetric tensor is produced by sub-
tracting the transpose of the Velocity Gradient tensor from the Velocity Gradient
tensor. The result has zero on all of the diagonal terms and the off-diagonal terms are
symmetric but have opposite signs across the diagonal. These values are coordinate
system invariant. For this application, the norm of the upper (or lower) terms is used

for the rotation scalar. This is a measure of the rate of solid-body rotation.

e Rate of Shear Stress.
A symmetric tensor can be produced from the Velocity Gradient tensor by adding it
to its transpose. This defines the Rate of Deformation tensor. The matrix represents
both the bulk and shear stresses and is dependent on the coordinate system. To extract
a single scalar that is coordinate system invariant and has the bulk terms removed it
is necessary to diagonalize this tensor. The result produces a vector which signifies
the ‘principle axis of deformation’. By employing techniques from Solid Mechanics,
the norm of the second principal invariant of the ‘stress deviator’ can be used as a

measure of the shear and employed as the scalar.

Currently, (and for the lack of anything better), a node based scalar field is produced that
is the product of the shear scalar and the rotation scalar. This has the proper characteristics
that both shear and rotation are required to mark the node as being in the boundary
layer/wake region. In fact, the square root of this quantity is actually used in order to

preserve the units of inverse time.

Figures 1 and 2 show an iso-surface of this quantity in 3D flow fields.



3 Presentations and Publications

Through the paper and video presented at the 1997 IEEE Visualization conference [Ken-
wright91] was not funded from this contract, it is germane to the work. The paper discussed
a number of applications of the original vortex core technique. This was awarded ‘Best
Case-Study’.

In conjunction with the conference SuperComputing '97 on the 19 of November 1997,
a Birds-Of-A-Feather on automated feature extraction was held at NASA Ames Research
Center. The purpose of this discussion was to get the industry, NASA and Army personnel
interested in this topic together at one location. An overall presentation was given (by
Robert Haimes) on the direction of this work. Dave Kenwright (NASA Ames) talked about
the vortex work — the paper given at the Visualization conference and some 2D extensions
for finding separation lines on body surfaces. Dave Lovely (an MIT Student) talked about
the beginnings of the algorithm work on the shock locator. Finally, the discussion was open
to the attendees. The topics were; (1) are these the correct features, (2) the kind of output

desired for each feature and (3) what is important (the priority).
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4 Next Years Effort

4.1 Regions of Recirculation

The recirculation algorithm described above needs to be closely integrated with the flow
solver in some way. The choice is either that solver writer completely incorporates this
by adding one more equation to the state-vector or some co-processing system (like the
visualization suite pV3) is used. Obviously, the best place for this PDE is within the
solver, in particular when there has been partitioning. This is because of the time-step
constraints of the Residence Time equation (the same as the solver) in conjunction with the
method used for integration in time, and the updating of information with the partition (and
other) boundaries. For the second choice, an API for solving this PDE will be developed so
that there is access to all of the required data. A Lax-Wendroff scheme will be used for the
time integration, therefore if some implicit or high-order explicit time integration scheme is
used for the solver care must be taken in selecting the time-step so that the solving of the

Residence Time equation is stable.

4.2 Boundary layers and Wakes

The current scheme shows promise but it has the following problems:

e The function of shear and rotation is currently ad hoc.

e The value is not non-dimensional, but has units of inverse time.
This means that the iso-surface value used to define the edge of the layer changes from
case to case. This scalar needs to be multiplied by some characteristic time associated

with the problem.

e The value used for the iso-surface is not specified via theory.

The work next year will focus on resolving these problems. This will include a rigorous
approach with either theory or computations of isolated flat-plates (where the theory exists)
or both.

11



4.3 Vortex Cores

The new scheme outlined here will be enhanced so that coherent lines (instead of line
segments) are produced. This will be done by collecting the line segments and tracing them
through the flow. The boundary layer work will be used to suppress the identification of

cores within this region unless swirling flow persists outside.

A measure of core strength will be found that can be mapped onto the core line or

integrated to get a single measure.
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Figure 1. Flow behind a tapered cylinder.

This image depicts the boundary layer function (the colored iso-surface) as seen behind the
flow about a tapered cylinder. The white disjoint line segemnts represent the results from
the vortex core finder. The colored lines are seeded streamlines. The color represents
density where the minumum (blue) is 0.9567 and the maximum (red) is 1.0192.

This data is from:
Dennis Jespersen and Creon Levit, "Numerical Simulation of Flow Past A Tapered
Cylinder". AIAA paper 91-0751, January, 1991.



Figure 2. Flow about a hemisphere cylinder.

This picture shows two views of the boundary layer function (the colored iso-surface) computed
from the solution about a hemisphere cylinder. The flow is incoming at 5 degrees off the
cylinder's axis and the Reynolds number is 14,000. The white disjoint line segemnts (seen in the
top image) represent the results from the vortex core finder. The color represents Mach number
where the minumum (blue) is 0.0 and the maximum (red) is 2.0774.

Note: in this case the extent of the vortex core is caught by this iso-surface.

This data is from:
Thierry Delmarcelle and Lambertus Hesselink, "Visualization of Second Order Tensor Fields and
Matrix Data". IEEE Visualization '92, September 1992.
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Summary

An algorithm is introduced to locate and display areas of shock in CFD solution fields.
The algorithm is tested for a variety of shock types and different solution fineness. The effective-
ness of the algorithm is tested on CFD solutions to the classical problem of a sharp wedge in
supersonic flow. Three separate grids were used to test the sensitivity of the algorithm to solution
fineness. The results indicated that the algorithm was able to locate the oblique shock, and dis-
played it as a region, with a much larger thickness than a physical shock. This was found to be a
result of numerical model used to approximate the discontinuity, and was effected by the element
size. The smaller the elements, the higher the gradients, and the smaller the shock region.

A couple of correction terms were added to locate transient shocks. Then the ability of the
algorithm to find moving shocks was tested on another classical problem, a one dimensional
shock traveling in a steady flow. The algorithm proved to be successful in finding these shocks.
but also displayed some false shocks caused by the CFD solver. These false shock indications
could be removed by only displaying a shock when the magnitude of the pressure gradient
reached a certain threshold. A heuristic algorithm was introduced to find a pressure gradient mag-
nitude threshold to filter out all the false shocks.

Related Work

Shock waves are discontinuities in the flow fields that may occur when the velocity of the
fluid exceeds the speed of sound. The state of the fluid as described by the pressure, velocity and
other primitive variables can change radically across a shock boundary of only a few molecular
paths wide. However, when the flow is numerically modeled, the shock feature is often smoothed
out over a greater distance, and the discontinuity is not as pronounced. Further, it becomes diffi-
cult to recognize where the shock occurs by only looking at the primary variables that are output
from the numerical model. For example, the pressure may change dramatically across a shock, but
the reverse is not often true. So test quantities are calculated from these primitive results, and
when the value of this new variable exceeds some threshold, a shock is indicated. The difficulty is
to produce a shock variable that is accurate enough to capture all the regions where a shock may
be occurring and exclude areas where related flow phenomenon may be occurring, like expansion
waves.

In the past, shock waves have been extracted from data sets with a couple of techniques.
The first is to look for inflexion points in the pressure or density fields and threshold out those
areas with small gradients. At a shock, the pressure gradients go through a change of 180 degrees
in direction and a magnitude change as well. At a shock the second derivative of the pressure goes
to zero, as shown in the following figure. However, this also occurs in quiescent flow, so it is nec-
essary to filter out those areas with small pressure gradients.
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figure 1: Shock inflexion points
A second method is the one used in this paper, which is to use the pressure or density gra-
dients to find the value of the mach number normal to a shock. A shock is then located where this
normal mach number exceeds one. This algorithm is described in more detail in the following sec-
tion.

Stationary Shocks

There are a couple of questions that need to be answered for any feature detection algo-
rithm. Is it accurate, i.e. does it detect features that are actually present in the data. And secondly,
does it exclude all other features. To answer these questions, a couple of case studies were done,
comparing solutions over different grids to see if the features that the algorithm found match the
theoretical or experimental location of the features.

The stationary shock algorithm was developed by knowing something about the shock
geometry, which is shown in the following figure. For any shock, the mach number normal to the
shock has a value of one just before the shock. This normal mach number can be computed on
each node and used as a test value for determining the shock location. To compute the normal
mach number, to see if a shock occurred, it is necessary to find what the shock orientation would
be. The pressure gradient can be used to find the shock orientation because it is always normal to
the shock. So, the pressure gradient was approximated for each node, and then used along with the
mach vector to calculate a shock test value at each node. Where the test value equals one forms a
boundary surrounding the shock location.

figure 2: Shock detection test quantity

When applied to three dimensional models, an isosurface was created where the normal
mach number equaled one. The shock feature is surrounded by the M normal = 1 isosurface, and
has a thickness associated with it. In the two dimensional case, contours of the normal mach num-
ber were created, and the Mn = 1 curve forms a boundary for a shock region in the two dimen-
sional model.

Numerically, there is a difficulty with the normalized pressure gradient in some cases.
When the magnitude of the pressure gradient is zero, the calculation for the normalized pressure
gradient has a division by zero error. To get around this, a small number can be added to the mag-
nitude of the pressure gradient. Then when the components of the pressure gradient are multiplied
by one over the magnitude of the pressure gradient, the numbers will not be unreasonably large.
An alternative method, which was used in this experiment, is to set the normal mach number to
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zero when the magnitude of the pressure gradient got below a certain threshold.

Shock strength

Beside the location of a shock, it is also of interest to find the relative strength of the
shock. Ideally, this could be calculated by the ratio of some invariant flow variable across the
shock. For example, P2/P1 would be a good measure of the shock strength. It has to be an invari-
ant variable, because plotting velocity or mach ratios will give incorrect results when the shock is
translating. Calculating P2/P1 is a problem for two reasons. The first is that it is necessary to find
the exact extent of the shock region with a contouring algorithm in the two dimensional case, or
an isosurfacing algorithm in the three dimensional case. It’s not a quantity that can be calculated
on a node by node basis, but only with knowledge of the interpolants used in the elements. This is
just computationally a bit more difficult, but the second problem is more fundamental. The shock
finding algorithm relies on high gradients to mark the shock region. However, near the boundaries
of the shock, the pressure and density gradients get smoothed due to viscosity in the real shocks
and dissipation in numerical shocks. The result is that the detected shock region will not encom-
pass then entire shock. This means that the pressure ratio across the boundary of the detected
shock region will be smaller than the actual pressure ratio across the shock. Later in this paper,
tests were done to see if the pressure ratio across the detected region could be used to calculate the
actual pressure ratio with an empirical relation.

Region of high gradients

P,
P2 found
o
::}; 112 > P2found
;_“3 Pl 1 found
Plfound
P

Location
figure 3: Computed vs. actual pressure ratio
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Shock Classification
Results

Supersonic ramp

The supersonic ramp test case had the geometry detailed in the following figure. The goal
was to see if the shock detector would show clear oblique shocks and reject areas of expansion. A
test case was also run with a mach number that would not support an oblique shock to see if the
detector would capture these detached shocks.

.QO /7 ‘
N>
Free stream flow, M > 1 & %
> &
g
DY
4ff:::/”/”’//A\\\\\\\\\\\\\\\
2N
30 degrees

figure 4: Ramp model

Oblique shock

The first case was run at mach three on a relatively fine grid, which theoretically should
produce an oblique shock of 45 degrees. The following figure shows the grid that was used.
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figure 5: Fine wedge grid

In this case, the shock location can be effectively inferred from the pressure contours
shown in the following figure. The location is determined by looking for areas of close pressure
contours. This region in the front of the wedge corresponds nicely to an oblique shock of 45
degrees, as predicted in invicid compressible flow theory. An even better estimate can be made by
looking at the pressure gradient contours shown in figure 6. Finally, figure 7 shows the shock
value contours. Note that this is very similar to the pressure gradient contour plot, except that the
areas of flow expansion and small pressure gradients have been effectively filtered out.
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figure 7: Contour plot of the pressure gradient magnitude
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figure 8: Mach 3 shock scalar contours

Because the shock scalar quantity is calculated with a derivative, it is more sensitive to a
poor quality solution than is a primary quantity like pressure. So, the shock contours will not only
show the location of the shock, but also the quality of the solution better than contours of the pri-
mary variables.

Grid study

The same model was run with a couple of other grids. The first was relatively coarse, and
the second was very refined. The following figure shows the grid that was used in this experiment.
Note that some refinement was still used in the area of the shock

figure 9: wedge coarse grid
Figures 9 and 10 show the results that were obtained on this coarse grid. The were similar
results, except that the pressure contours were spaced further apart, indicating that the pressure
gradients were smaller for the coarse grid. This had the effect of making the detected shock region

larger than on the coarse grid. The thickness of the indicated shock is dependent on the fineness of
the grid.

page: 9



01 o3ed

‘am3y oY) Aq umoys A[Ie9[d st AJInunuodsip anssaid urew oy, "YO0ys Y} 0} [euLiou Jui| e Suoe

ainssaxd oy jo ydeid e st a3y Suimojjoj oy, "wyro e Surpuy yooys Yy uo joedwr ue sey
1By} "SIn0Ju0d aInssaid oy YPIm parndoo uouswouayd Sunsarsyur ue ‘pus suy A10A oY uQ

puIS 951800 ‘g=]A] SINOJUOD IN[eA JO0YS :] | 2In3y

GO+3G9866 ¢

B8L861 &
HHALHSH
HeRLLSES |
OPeRLEOES L
OILSCL L
HO+3LL0CY £
BPLL5TS
HO+310Ct §
D0+20151C' ¢
BO+3D0LZ L
00+3¢0S01 1
00+300000 L

£0-350291 L

£0-916598'¢
20-95481C°7
20-98SLLL'L
20-31++2T°L




but so is a high frequency pressure oscillation after the shock.
0.13
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figure 12: Pressure vs. location across the shock

The high frequency pressure oscillation effects the shock finding algorithm because these
oscillations produce relatively high pressure gradients, which get picked up by the algorithm and
displayed as a shock. The following figure shows the result, the shock contours have isolated
islands away from the actual shock. This problem can be resolved by thresholding out all areas
with a small pressure gradient magnitude. Similar problems show up in the transient shocks, and a
method for dealing with them is presented in this section.
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figure 13: Shock contours on very fine mesh.
The results that are shown in the following table show that the shock algorithm finds more
defined shocks with increasing numbers of elements. So, the shape of the shock region can not
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only locate the shock, but point to a lack of mesh refinement in the area.

Table 1: Grid study results

Number of Shock
elements thickness
1129 NA
8014 0.12
28046 0.05

The grid was also modified to see if alignment of the elements would affect the shock
detection. The elements were aligned so that one edge followed the shock by placing the line-
source directly on the shock. The results shown in the following figure is that alignment o f the
elements does effect the edges of the shock boundary. Regular, aligned elements seem to produce
jagged shock contours.
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figure 14: Shock contours and on a regular grid

Detached shock

Another run of the same model was made at a lower mach number to see if the algorithm
could capture detached shocks. If the pressure contours shown in the following figure were used
to determine the shock location, the wrong conclusions would be reached. From the figure, it
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looks like there is a sharp oblique shock that is attached to the ramp. However, when the shock
finder is applied (figure 3), it is clear that a shock does not occur in this area, which is consistent
with the theory.
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figure 15: Pressure distribution of wedge in M=2 flow
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figure 16: Shock scalar distribution of wedge in M=2 flow
So, the shock finding algorithm can give information about the nature of the flow, without
showing clear, well defined shock surfaces.

Discussion

In the two dimensional case, the shock is depicted as a region of high gradients, not as the
thin discontinuity that it really is in nature. In three dimensions, when an isosurface is located
where the shock scalar equals 1, a similar three dimensional region is enclosed, and it often looks
as if the shock has two surfaces. In the past, researchers have attempted to filter out one of these
surfaces by weighting the nodes by pressure or density gradient. Then only the surface with the
largest gradients will show up in the final display. However, the fact that there is a shock region is
a useful thing. The size of the region points to problems of grid resolution, where there is a coarse
grid, the gradients tend to be smeared out, causing the shock feature to be less well resolved.
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Transient Corrections

The assumptions made for finding the location of the shock no longer apply when the
shock is moving. The problem is that the normal mach number across the shock will be different
from one if the shock is moving. There has to be a correction applied to account with the moving
frame of reference. The following equation shows what this term must be, basically a time deriva-
tive of the pressure.

1 1Dp_ 1 1dp p v
|VplaDt ~ |Vp|aodt +M-Vp

It is more computationally expensive to approximate time derivatives directly, since that
would require the storage of multiple time steps. So, the time derivative of pressure was calculated

based on relations that equate it to a spacial variation of the state variables. The first equation
applies to isentropic flows.

dp = azap

This equation is then used along with the conservation of mass equation to produce an
equation for an invariant test quantity that can be used to locate moving shocks.

= —Ve(p3)

QJlQJ
~ 10

1 1Dp _ 1

VplaDr - —awv‘(P?) +M-Vp

A shock is then located when this quantity equals 1.

In the general case, pressure can be related to the internal energy and velocity of the flow.

1
p= (v—l)[pE—E(p?n-(p?n]

page: 15



ap _ d . 1 2dp
L= (-1 GPE) -2 (oD +50 5 |

?)it) = (y—l)l:— Ve(pgH) +g (Vp +Vepaq) - 59 V°(pq)]

IDP__ 1 1 . . . _1 ) . .
iD= W;Ta”‘”[‘v (P2H) +2 * (Vp+ Vopad) - 34" Ve(pd) |+ 1§

Shock Speed

The speed of the moving shock wave can be approximated with by looking at the magni-
tude of the correction term.

Test Case

Translating normal shock in a tube

A model of a moving normal shock in a channel was created to investigate the behavior of
the shock finding algorithm, and the effect of the transient modification. Two separate runs were
done, the first had the following initial conditions shown in the following figure.

P2/P1=5.0
M1=3.0 ”
U w U
1 > jé S, 2.
70

figure 17: Transient shock model
The formulas for moving normal shock waves with constant Cp and Cv are applicable in
this case. However, these formula assume that the upstream velocity, U, is 0, so a correction had
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to be made to produce the correct initial conditions of the flow. For the first run, the pressure ratio
was chosen to be less than the pressure ratio for a standing shock in M=3 flow (10.33). This
required that the shock move toward the right. The speed of the shock traveling into stationary
flow was calculated with the following formula.

Then the speed of the flow behind the a shock traveling into stationary flow was calculated with
the following formula, which required the density ratio across the shock.

v o=wl1-2
p [)2

This ratio was calculated with another shock relation, and is only dependent on gamma and the

pressure ratio.
. u(P_Z]
P, Y-1\ P,

Since the upstream velocity was not zero, the actual speed of the shock had to be corrected with
the following formula.

WS = UI_W

Similarly, the downstream velocity was determined by subtracting the change in velocity due to
the shock, Up from the upstream velocity Ul.

The results are shown in the following figures. The pressure distribution across the shock
has some interesting features that are a problem for the shock finding algorithm. The shock started
at X=0, and is moving to the right. As it moves, the shorter wavelengths that makeup the initial
discontinuity move at a slower speed than the longer wavelengths. This difference in speed is a
numerical artifact of the time stepping method used in the CFD solver. So, high frequency pres-
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sure oscillations show up behind a moving shock, as shown in the following figure.

figure 18: Pressure distribution
The following figure is a plot of the shock scalar with the isentropic transient correction.

figure 19:Shock scalar
The following figure is a plot of the same quantity after a few more iterations. The shock is
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clearly moving to the right, as expected.

figure 20: Shock scalar at later time

The results of this experiment point to the importance of choosing a threshold value for the
magnitude of the pressure gradient. Because of the slower wave speeds of the higher frequency
pressure waves, oscillations in the pressure gradient take place behind the shock. These pressure
gradient increases are enough to skew the results and show up in the shock detection values as a
group of shocks behind the main one.

figure 21: Shock scalar when the pressure gradient is not filtered

Effect of correction term

From the above experiment, it was noted that it did not matter if the transient correction
was used or not, a shock would still be indicated. This was because the upstream mach number
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was greater than 1, making the normal mach number greater than one. A change in initial condi-
tions was made to see what happens when the upstream mach number is less than 1. The upstream
mach number was set to 0.9,and the pressure difference was set to 3.0, which will produce a nor-
mal shock moving to the left.
Calculation of the shock scalar

The shock test scalar was calculated with isentropic transient correction equation, that was
simplified for this particular example.

1 1Dp _
=2k = gV +M-V,
VplaDr |V | *(Pq) p
The Y component of velocity was zero in this case, so the divergence term simplified to the fol-
lowing.
1 1Dp _ 1 ( d )
o — = up |+ M-V
VplaDr =~ “IVplax*? P

The derivative of the pressure times the x velocity was then expanded with the product
rule, yielding the final equation.

1 1Dp 1
VplaD: =~ leI(dxp+ )”‘7 Vp

The results are shown in the following two figures. In the first figure, the normal mach
number is plotted against the x-axis. Notice that the normal mach number does not get above 1,
which by the previous test indicates that no shock is present in the flow. However, the shock test
scalar, shown in the second figure does get above 1 at the shock, indicating that the shock is

indeed present. The correction term has made it possible to pick up the normal shock.
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figure 22: Normal mach number vs. location
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figure 23: Shock test variable vs. location
Calculation of Derived Quantities
The following quantities were needed to compute the shock scalar.
Table 2: calculated quantities
name symbol origin
Pressure P R Primary output
from CFD code
Velocity U B output from CFD
i code
Density tho output from CFD
code
Speed of sound a
Pressure gradient Derived from the
CFD output
Speed q vector length of
velocity components
Mach vector M Directed along the
velocity vector, with
the length of the
mach number
Mach number M Derived from CFD

output and gamma
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Table 2: calculated quantities

name symbol origin

gamma 1.4

Gradients

The pressure gradient at each node was calculated by first calculating the gradient of each
cell, which was either triangular or tetrahedral, then dividing this quantity by the number of nodes
in the cell, and adding it to a running sum on each node. The sum was then divided by the number
of times it had been touched to come up with an average gradient for each node.
Flow solver

The flow solver used for all the test cases was a two dimensional explicit euler solver.

Conclusions

The stationary shock finding algorithm does not produce a thin shock surface that would
reflect the shape of the shock in the real flow, but because of numerical smoothing, shows a shock
region. Even though the shocks are thick, because the shape of the test value’s contours can give
the analyist information about the flow, the quality of the solution, and the quality of the mesh. If
the mesh is too coarse, the shock detector will show a relatively thick shock area. If the shock is
unattached, then the shock finder will show this. If the solution does not have enough dispersion,
the shock finder will show this quite clearly by the nature of the contour.

The main difficulty with the algorithm is the need to choose a cutoff for the magnitude of
the pressure gradient. This is especially true for transient shocks, where dispersion may cause the
algorithm to display multiple non-existent shocks behind the real shock. There are a couple of
ways to compensate for this effect.

Ideally, it would be nice to determine the pressure ratio across the detected shock to see if
this pressure ratio were enough to produce a normal shock at Mach 1, the weakest shock possible.
Any detected region not satisfying this test would then be known to not be a shock, and excluded
from display.
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